UCLA Luskin School of Public Affairs

Luskin Center for Innovation

Pricing PEV Charging: Financial Viability and Fueling Costs

27 May 2014

Plug-in Electric Vehicle Infrastructure Information Gathering Meeting Sacramento CA

Brett Williams, MPhil (cantab), PhD

EV & Alt. Fuel Program Director, Luskin Center for Innovation Assistant Adjunct Professor, Public Policy University of California, Los Angeles

innovation.luskin.ucla.edu/ev

Outline

- Pricing Workplace Charging
 - Station financial viability
 - Driver fueling costs
- Additional, "parting" thoughts
 - e-miles and battery asset utilization
 - "Path of Least Resistance" blog
 - etc.

Luskin School of Public Affairs Luskin Center for Innovation

Pricing Workplace Charging: Financial Viability and Fueling Costs

Brett Williams, MPhil (cantab), PhD and JR DeShazo, PhD Transportation Research Record

(forthcoming, pre-publication manuscript at innovation.luskin.ucla.edu/ev)

Workplace Charging Viability Analysis: Questions

- How much of their station investment can employers expect to recover at prices employee drivers are willing to pay?
- Which pricing structures are most robust to uncertainty?
- Which pricing structures are the most fair to employee drivers?
- What might help improve the cost-recovery potential?

Workplace charging level 2 scenario

Fee structure:	Per-hour, per-kWh, or per-month	1-way commute (mi):	15	Electricity (/kWh):	\$0.1275
Session fee:	\$0 or \$1	kWh purchased:	5.2	Discount rate:	5%
Charger (kW):	3.5 ~Level 2	Utilization (hour/d):	1.5	Days/year:	240

Station cost recovery

10-year present value of net revenues (NPV)

Workplace charging breakeven pricing: per-hour

Workplace charging breakeven pricing: per-hour

Workplace charging breakeven pricing: per-month

Workplace charging breakeven pricing: per-kWh

What is the most a "rational" driver would pay for electric fuel?

(on average, over time)

\$4/gallon of gasoline equivalents

Gasoline alternative (mi/gal)

\$4/gallon of gasoline equivalents

Gasoline alternative (mi/gal)

Workplace charging breakeven pricing: per-kWh

What is the cost recovery potential, given the "most" a given type of driver is willing to pay?

MUD charging level 2 scenario

Fee structure:	Per-hour, per-kWh, or per-month	Ave. daily driving (mi):	30	Electricity (/kWh):	\$0.164
Session fee:	\$0	kWh purchased:	10.5	Discount rate:	5%
Charger (kW):	3.5 (Level 2)	Utilization (hour/d):	3.0	Days/year:	350

What is the MUD cost recovery potential, given the "most" a given type of driver is willing to pay?

Monte Carlo uncertainty analysis: Inputs

Input parameter	Min.	Best guess	Max.
One-way commute distance (mi)	10	15	20
Maintenance costs	1%	5%	10%
(% of all-in costs)			
Discount rate	3%	5%	10%
PEV electric fuel economy (kWh/100mi)	30.1	34.5	38
Escalation of markup	1%	3%	5%
Commute days per year	235	240	260
Maintenance cost escalation	1%	uniform (3%)	5%
Charging power (kW)	1.4	3.5	7.2
Electricity cost (/kWh)	\$0.0901	\$0.1275	\$0.30
Electricity cost escalation	1%	3%	12%

Workplace-charging case

Monte Carlo uncertainty analysis: Importance

	+\$0.30/kWh	\$1.50/hour	\$45/month
Point estimate	\$386	(\$148)	(\$91)
Monte Carlo mean	\$264	(\$1,387)	(\$910)
95% confidence interval	(\$829) to \$1,460	(\$3,426) to \$2,517	(\$2,535) to \$300

Monte Carlo uncertainty analysis: Importance

	+\$0.30/kWh	\$1.50/hour	\$45/month
Point estimate	\$386	(\$148)	(\$91)
Monte Carlo mean	\$264	(\$1,387)	(\$910)
95% confidence interval	(\$829) to \$1,460	(\$3,426) to \$2,517	(\$2,535) to \$300
Input parameter	Un	ncertainty Contribution	on ^a
One-way commute distance (mi)	54%	2%	-14%
Maintenance costs	-27%	-6%	-19%
(% of all-in costs)			
Discount rate	-8%		-1%
PEV electric fuel economy (kWh/100mi)	6%	0.2%	2%
Escalation of markup	3%		
Commute days per year	1%	0.1%	-0.3%
Maintenance cost escalation	-1%	-0.2%	-0.3%
Charging power (kW)		-73%	
Electricity cost (/kWh)		-16%	-56%
Electricity cost escalation		2%	-7%

^a Described in the text, this is a metric based on normalized rank correlation coefficients bdw@ucla.edu

How can we make this better?

a)	Fee st	ructure	per	-kWh	Session fee		\$0.0	00	
					Εle	ectricity	ma	rkup	
	•		\$	-	\$	0.10	\$	0.20	\$ 0.30
	\$	-	\$	-	\$	1,087	\$	2,174	\$ 3,261
	\$	1,000	\$	(1,437)	\$	(350)	\$	737	\$ 1,824
ost	\$	2,000	\$	(2,875)	\$	(1,788)	\$	(701)	\$ 386
ပ	\$	3,000	\$	(4,312)	\$	(3,225)	\$	(2,138)	\$ (1,051)
ಕ್ಷ	\$	4,000	\$	(5,750)	\$	(4,662)	\$	(3,575)	\$ (2,488)
Project Cost	\$	5,000	\$	(7,187)	\$	(6,100)	\$	(5,013)	\$ (3,926)
Pro	\$	6,000	\$	(8,624)	\$	(7,537)	\$	(6,450)	\$ (5,363)
_	\$	7,000	\$	(10,062)	\$	(8,975)	\$	(7,887)	\$ (6,800)
	\$	8,000	\$	(11,499)	\$	(10,412)	\$	(9,325)	\$ (8,238)
c)	Fee st	ructure	per	-hour	Sess	sion fee	\$0.0		
						Hourly	fe	e	
			\$	0.50	\$	0.75	\$	1.25	\$ 1.50
	\$	-	\$	(15)	\$	670	\$	2,041	\$ 2,727
	\$	1,000	\$	(1,453)	\$	(767)	\$	604	\$ 1,289
Project cost	\$	2,000	\$	(2,890)	\$	(2,205)	\$	(834)	\$ (148)
\ddot{c}	\$	3,000	\$	(4,327)	\$	(3,642)	\$	(2,271)	\$ (1,586)
ಕ್ಷ	\$	4,000	\$	(5,765)	\$	(5,079)	\$	(3,708)	\$ (3,023)
oje	\$	5,000	\$	(7,202)	\$	(6,517)	\$	(5,146)	\$ (4,460)
Pr	\$	6,000	\$	(8,639)	\$	(7,954)	\$	(6,583)	\$ (5,898)
_	\$	7,000	\$	(10,077)	\$	(9,391)	\$	(8,021)	\$ (7,335)
	\$	8,000	\$	(11,514)	\$	(10,829)	\$	(9,458)	\$ (8,773)
e)	Fee st	ructure	per	-month	Elec	tricity fee	\$0.0		
						Monthl	y f	ee	
			\$	15	\$	25	\$	35	\$ 45
	\$	-	\$	4	\$	930	\$	1,857	\$ 2,784
	\$	1,000	\$	(1,433)	\$	(507)	\$	420	\$ 1,346
ost	\$	2,000	\$	(2,871)	\$	(1,944)	\$	(1,018)	\$ (91)
ŏ	\$	3,000	\$	(4,308)	\$	(3,382)	\$	(2,455)	\$ (1,528)
덨	\$	4,000	\$	(5,746)	\$	(4,819)	\$	(3,892)	\$ (2,966)
Project cost	\$	5,000	\$	(7,183)	\$	(6,256)	\$	(5,330)	\$ (4,403)
ď	\$ \$	6,000	\$	(8,620)	\$	(7,694)	\$	(6,767)	\$ (5,841)
	\$	7,000	\$	(10,058)	\$	(9,131)	\$	(8,205)	\$ (7,278)
	\$	8,000	\$	(11,495)	\$	(10,569)	\$	(9,642)	\$ (8,715)

Increasing utilization

6,000

7.000

8,000

\$ (8,620)

\$ (10,058)

\$ (11,495)

(7,694)

(9,131)

(10,569)

(6,767)

(8,205)

(9,642)

\$ (5,841)

\$ (7,278)

\$ (8,715)

Increasing utilization

3.000

4,000

5,000

7.000

8,000

(4,308)

(5,746)

(7,183)

(8,620)

\$ (10,058)

\$ (11,495)

(3,382)

(4,819)

(6,256)

(7,694)

(9,131)

(10.569)

(8,205)

(9.642)

\$ (7,278)

- Productivity losses and/or other costs
- Multiplexing/low-power charging:
 - Route the available power to the cars, not the cars to the available power

13,045

11,608

10,170

8,733

7.295

5,858

4,421

2,983

1,546

(1,329)

109

Supplemental Value?

- Might secondary use of charging facilities help?
 - Employee + fleet + nighttime public access?
 - Smart charging to provide grid-support services

Summary (in round numbers)

- If \$4/gal equivalent is an important threshold, this allows for:
 - station prices of less than \$0.30/kWh
- Workplace (\$0.15/kWh of total is markup): covers only ~\$1,000 in all-in facility costs per PEV
 - \$1/hour or \$30/month do too
- Per-kWh pricing
 - potentially more robust to uncertainty, with better upside potential
 - less unintentional price discrimination
- Strategies to lower costs and improve station value:
 - "Simple" solutions
 - multiplexing, low-power, fleet and/or public access, gridsupport services

UCLA Luskin School of Public Affairs Luskin Center for Innovation

Additional, "parting" thoughts...

Battery second-life revenue from grid-support services

Recharge Repurpose

Recycle

(Williams & Lipman 2011)

Application	PHV	Volt	LEAF
Electric Energy Time-shift	\$330	\$880	\$1,720
Electric Supply Capacity	\$320	\$850	\$1,670
Load Following	\$800	\$2,130	\$4,180
Area Regulation	\$8,720	\$23,250	\$45,610
Electric Supply Reserve Capacity	\$280	\$750	\$1,470
Voltage Support	\$2,870	\$7,670	\$15,040
Transmission Support	\$1,200	\$3,190	\$6,270
Transmission Congestion Relief	\$60	\$150	\$300
T&D Upgrade Deferral 50th percentile†	\$2,390	\$6,470	\$12,490
T&D Upgrade Deferral 90th percentile†	\$3,760	\$10,020	\$19,660
Substation On-site Power	\$600	\$1,600	\$3,130
Time-of-use Energy Cost Management	\$730	\$1,960	\$3,840
Demand Charge Management	\$220	\$580	\$1,140
Electric Service Reliability	\$3,700	\$9,860	\$19,340
Electric Service Power Quality	\$4,170	\$11,120	\$21,820
Renewables Energy Time-shift	\$230	\$620	\$1,220
Renewables Capacity Firming	\$810	\$2,160	\$4,240
Wind Generation Grid Integration, Short Duration	\$4,680	\$12,480	\$24,480
Wind Generation Grid Integration, Long Duration	\$380	\$1,000	\$1,970

^{*} lifecycle benefit over 10 years, with 2.5% escalation and 10% discount rate † converted here to approximate 10 years of benefit to be comparable to other applications, but this is not likely at a single location

Supplemental Value?

- Given the limited cost-recovery potential of workplace charging, some employers may want additional value
- Might secondary use of charging facilities help?
 - Employee + fleet + nighttime public access?
 - Control (and aggregation) of recharging timing and rate (i.e., smart charging) to provide grid-support services

Does size matter? Per-charge and per-day e-mile potential

(Williams 2013)

Cumulative electric-mile potential of U.S. retail PEVs sold thru Nov '13

Does size matter? Per-charge and per-day e-mile potential

(Williams 2013)

Cumulative electric-mile potential of U.S. retail PEVs sold thru Nov '13

Illustrative e-mile cost effectiveness (assuming \$500 per rated kWh across the board)

		Battery cost/e-mi
<u>Model</u>		range
LEAF MY'11	BEV	\$163
Chevy Volt	PHEV	\$217
smart fortwo ed MY'11	BEV	\$131
i	BEV	\$129
Focus Electric	BEV	\$151
Active E	BEV	\$170
Prius Plug-In	PHEV	\$200
Model S 85kWh	BEV	\$160
Fit EV	BEV	\$122
RAV4EV	BEV	\$203
C-Max Energi	PHEV	\$181
Model S 60kWh	BEV	\$144
Accord Plug-in	PHEV	\$258
Fusion Energi	PHEV	\$181
LEAF S MY'13	BEV	\$158
smart electric drive MY'13	BEV	\$129
Chevy Spark	BEV	\$128
500 Elettrica	BEV	\$138

(Williams 2013)

Illustrative e-mile cost effectiveness (assuming \$500 per rated kWh across the board)

		Battery cost/e-mi	Battery cost/e-mi
<u>Model</u>		range	daily driving
LEAF MY'11	BEV	\$163	\$396
Chevy Volt	PHEV	\$217	\$275
smart fortwo ed MY'11	BEV	\$131	\$275
i	BEV	\$129	\$267
Focus Electric	BEV	\$151	\$383
Active E	BEV	\$170	\$533
Prius Plug-In	PHEV	\$200	\$200
Model S 85kWh	BEV	\$160	\$1,417
Fit EV	BEV	\$122	\$333
RAV4EV	BEV	\$203	\$697
C-Max Energi	PHEV	\$181	\$181
Model S 60kWh	BEV	\$144	\$1,000
Accord Plug-in	PHEV	\$258	\$258
Fusion Energi	PHEV	\$181	\$181
LEAF S MY'13	BEV	\$158	\$396
smart electric drive MY'1	3 BEV	\$129	\$293
Chevy Spark	BEV	\$128	\$350
500 Elettrica	BEV	\$138	\$400

(Williams 2013)

"Path of Least Resistance"

http://luskin.ucla.edu/blogs/brettwilliams

Thank you for your attention!

Additional slides, references available...

UCLA Luskin School of Public Affairs

Luskin Center for Innovation

Cost of fueling

Table 3-7: Illustrative fueling cost benchmarks: Per-hour workplace charging

Pricing Level	\$ per electric mile	Electricity equivalent	Gasoline equivalent (CV)	Gasoline equivalent (PHEV)
H1. \$0.50/hour actively charging	\$0.05/e-mi	\$0.14/kWh	\$1.34/gal	\$2.02/gal
H2. \$0.75/hour actively charging	\$0.07/e-mi	\$0.21/kWh	\$2.01/gal	\$3.03/gal
H3. \$1.25/hour actively charging	\$0.12/e-mi	\$0.36/kWh	\$3.35/gal	\$5.05/gal

Fueling Cost Benchmarks: WPC vs. Gasoline

			Gasoline equiv.	Gasoline equivalent
Pricing Level	\$ per electric mile	Electricity equivalent	(Ave. vehicle)	(PHEV or hybrid)
1. breakeven prices			"A Steal"	"Incentivizing"
Electricity cost=\$0.1275/kWh (in year 1)	\$0.04/e-mi	\$0.13/kWh	\$1.20/gal	\$1.80
\$0.50/hour actively charging	\$0.05/e-mi	\$0.14/kWh	\$1.34/gal	\$2.02
\$15/month	\$0.05/e-mi	\$0.14/kWh	\$1.36/gal	\$2.05
2. low prices	11		"Incentivizing"	"Cheap"
\$0.75/hour actively charging	\$0.07/e-mi	\$0.21/kWh	\$2.01/gal	\$3.03
Electricity cost + \$0.10/kWh	\$0.08/e-mi	\$0.23/kWh	\$2.14/gal	\$3.22
\$25/month	\$0.08/e-mi	\$0.24/kWh	\$2.27/gal	\$3.42
3. medium prices		<u>.</u>	"Cheap"	"Uncompetitive"
Electricity cost + \$0.20/kWh	\$0.11/e-mi	\$0.33/kWh	\$3.08/gal	\$4.64
\$35/month	\$0.12/e-mi	\$0.34/kWh	\$3.17/gal	\$4.78
\$1.25/hour actively charging	\$0.12/e-mi	\$0.36/kWh	\$3.35/gal	\$5.05
Low gasoline price	\$0.13/e-mi	\$0.37/kWh	\$3.50/gal	
Gasoline price (~CA 2012 average)	\$0.15/e-mi	\$0.43/kWh	\$4.00/gal ^a	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\